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Overview

e Planetary rover design has unique requirements
— Environmental
— CPU and sensor limitations on control algorithms
— Style of commanding
— Fault Responses
 Case study: MER solution
— Mars Equatorial solar-powered environment
— Single CPU impact on surface autonomy
— Once-per-day commanding

— Stop and wait vs autonomous responses

 Challenges for future missions
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.
Environmental Constraints U

o Terrestrial rover design has tremendous flexibility
— Wheels, legs, treads

— High power available via human-provided refueling sources

 Planetary rovers have to rely on low power and KISS (Keep It
Simple, Somebody) design

— More motors or more actuators are more things that can go wrong
— You get what you get: mission survivability trumps robotic capability

« Low power means slow driving and slow processing
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CPU and Sensor Limitations

;‘ ‘.

 Terrestrial vehicles use state of the art CPUs and sensors
 Rover equipment must survive the cruise and surface
environments

— Proven, space-qualified devices are typically a decade or more out of
date

— CPUs are much slower: Sojourner 0.1 MHz, MER 20 MHz
— Sensors can be much slower and are more limited in number
e Algorithms must be tailored to the current system

— Visual Odometry example: slow image acquisition time dictates large
distance between steps, necessitating more robust tracking software
than needed for terrestrial operations

— Hazard Detection example: plan to use the minimum number of
images needed to ensure proper obstacle detection
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Style of Commanding

;‘ ‘.

e Direct teleoperation does not work (except on the Moon)
— Typically only one chance to send commands each day

— Send a series of conditional, event-driven commands

 Goal designation is different:

— On Earth, a goal might be set using a live beacon, or GPS
coordinates

* Planetary rover Goal designation has multiple error sources:

— Target specification error: locating the rover with respect to the goal
at its initial position
» Stereo range resolution dominates in rover-taken images, initial rover
localization and map projection resolution dominate in infrequently-taken
orbital images
— Ensuring the proper goal has been reached at the end

» Must either track the goal or carefully update rover position estimates

along the way
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Fault Responses

 There is no kill switch
— The rover has to be programmed to be more conservative

e Some faults are worse than others
— Surface operations are different than cruise operations
— Fault behavior can be tailored to the current terrain

« The command language needs to be designed to allow
autonomous fault detection and recovery

— Must allow the system to be retuned for different types of terrain; we
don’t have smart enough sensing to autonomously switch behaviours

based on terrain yet
— Adding contingencies into the plan for benign or expected faults will
improve overall mission return

e Plan for degraded operations when components fail
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g
MER Design due to Environment and KISS -

« Low power: Nominal mission planned to succeed even with
limited power

* Slow driving: Wheel motor gear ratios were determined by the
needs of worst-case climbing

— So it can climb over obstacles, but its top speed is limited even in
benign terrains

 Limited sensing
— No camera can see the middle wheels or under the rover

— A small number of cameras was chosen to minimize the power
required and system integration complexity
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g
MER CPU and Sensor Limitations U

e Slow processing: we use the same CPU for Launch, Cruise,
Entry/Descent/Landing, and Surface operations

— Even though surface operations do not require the same robustness
as the other phases

— CPU speed also limited by available power
 Slow sensing: Cameras, motors, CPU must survive extreme
temperatures and use minimal power

— Cameras take excellent images, but 10 seconds are needed just to
transfer a stereo pair of 1 Megapixel images into RAM

e This impacts the design of autonomy algorithms and puts
constraints on their use during operations
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Most MER Autonomy
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.
MER Style of Commanding U

e A series of event-driven conditional commands is updated
each drive day
« Drive goals are normally specified using X,Y,Z
— Short range drive goals (< 20 m) from onboard Navcam range data
— Long range drive goals from Pancam range data or orbital images

 Only goals that allow for accumulated position estimation
error are selected

— Position error can be minimized by enabling Visual Odometry
« Visual Target Tracking can eliminate target specification error

— Constantly re-estimating target location visually during a drive
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.
MER Fault Responses U

 Two classes of driving faults: Goal and Motion Errors

— Goal Errors simply indicate the planned location wasn’t achieved; the
vehicle is still safe

— Motion Errors indicate some system parameter is out of range, e.g.,
motor current, vehicle tilt

» But ranges are selected to ensure overall vehicle safety; even if “out of
range”, you can still have sufficient power and communications

« Command sequences can behave conditionally on fault type
— The more time you have, the more alternatives you can plan for
 Unplanned faults leave the vehicle in a safe state

« Both MER vehicles are dealing with failed motors, yet
continue to perform useful science
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o
Future Missions: Focus on Telemetry u

 Rover telemetry requirements differ from terrestrial systems

 Make drive behavior reproducible
— Make sure you provide enough data to understand vehicle behaviour
— Include occasional images of tracks

e Priority matters

— Bandwidth may be limited, so high level summaries and error status
are given the highest priority

 Redundancy helps

— Telemetry transmission may be interrupted or lost at any point, so
there may only be partial data
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.
MER Partial Data -

« Each rover generates dozens or even hundreds of separate
pieces of data each sol

 Not all generated data is received at Earth the same day
— There is limited bandwidth throughout the communication chain

* (rover -> orbiter -> deep space network)
— Bad weather at the Deep Space Network antenna could corrupt data

« Certain information is replicated in many forms

— E.qg., rover X,Y,Z position appears in EH&A, certain EVRs, and
multiple data products
 Over 600 distinct fields are automatically extracted from
multiple sources and given a unique name
— Users generally do not care exactly how the information was collected
(l.e., the source of the data), but they do want to see every value
downlinked
» Example: Course plot
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.
Future: Resource Modeling U

 Any autonomy technology transitioning to flight must include
a prediction of its CPU resource use as a function of sensed
data size (e.g., image resolution)

— RAM, CPU time
 Rover operations team will need to model overall system
resource use during each day:
— Power
— Time required
— Data Volume
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g
Future: Robust Terrain Adaptation U

 Geometric hazard avoidance and basic Visual Odometry have
already been proven useful by MER

 Long distance autonomy will require better adaptation to
novel terrain

— MER had to be manually configured for each terrain type, even within
a single drive

— Autonomous adaptation to local terrain would improve long-range
performance

e Based on actual slip measurements, terrain geometry, terrain texture,
possibly onboard science analysis
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Opportunity Tilt History through Sol 380 @
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g
Future: Focus on target approach U

e Some of the most interesting science results derive from in

situ observations by instruments mounted on manipulator
arms.

« MER demonstrated components of single sol instrument
placement

— Visual Odometry, Visual Servoing, IDD (arm) Autoplacement
« But future goal specifications should consider not only X,Y,Z

position, but also kinematic constraints on how the target will
be sampled or studied upon arrival.
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Conclusion

 Planetary robots can take advantage of many new robotic
technologies
— But only if they are tailored to the mission constraints
o Faster processors would improve autonomy behavior, but not
by orders of magnitude
— Mechanical and other sensor bottlenecks quickly come into play
 More focus needed on reducing the number of days spent at
a science feature

— Most time is spent performing in situ work at science targets,
efficiency improvements there will have a large impact on overall
mission science return
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BACKUP SLIDES
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MER Downlink Needs

 Driving and operating the arm on the Mars Exploration
Rovers daily requires a rapid understanding of what
happened during the previous day.
 This immediate (“tactical”) analysis must be performed:
— Even when only a partial view of what happened is available,
— By people who may be working over a slow remote connection,
— Quickly enough to be useful to the current day’s planning activities.
 Long term (“strategic”) analyses are also needed:
— To understand the recent multi-day history of a stalled actuator

— To monitor overall vehicle health during the entire mission
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Spirit Drive through Sol 418 0
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Spirit Drive History through Sol 588 @

Meters

130.00 Autonav
Visodom
Blind

120.00
Drive toward Columbia Hills

110.00

100.00

90.00

80.00

70.00 Bonnevi

Data from rover's
onboard position
estimate

B0, 00+ Cl’ater Bim

Outcrop!

50.00

40.00

30.00

20.00

10.00 I

|
| T e e Lo L
st

MER A Sol
0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00

Challenges for Planetary Rover Navigation 29 MWM
- 29



Drive Constraints

 Typically only enough power to drive 4 hours/day

 Rover generally sleeps from 1700 — 0900; humans
plan next day's activities while it sleeps, e.g. human
terrain assessment enables a blind drive

* Asingle VisOdom or AutoNav imaging step takes
between 2 and 3 minutes (20MHz CPU, 90+ tasks)

e Onboard terrain analysis only performs geometric
assessment; humans must decide when to use
VisOdom instead of/in addition to AutoNav

e Placement of Arm requires O(10cm) precision vehicle
positioning, often with heading constraint
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g
A-436: Exercising 3 Drive Modes -

 Here’s an example of a sol that used 3 drive moves
e The drive plan for Spirit's Sol 436 was:
— Back up 5m cross-slope
— Drive upslope with VisOdom using 2 waypoints
 Run Obstacle Check in parallel

— Bear right and run AutoNav (no more VisOdom)
to climb a reduced slope in unseen area

e One last note says:

— This avoids the 25deg slopes along the front
ledge on the upsilope

31 MWM
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Planned vs. Actual Drive: A-436 .
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Ensuring Vehicle Safety: Keep-out Zones -

From Sol 249-265, Opportunity .- -
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Each time VisOdom noticed the
failure to make progress and
prevented driving into it.
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Summary

e Visual Odometry has proven a highly effective tool for
driving in high-slip areas
e Tangible benefits:
— Increased Science Return
* Provided robust mid-drive pointing

e Enabled difficult approaches to targets in
fewer Sols

— Improved Rover Safety
o Keep-out zones
o Slip checks
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.
Autonomy Tradeoffs U

e Benefits:
— Adapts to current vehicle state
— Can drive into unknown areas
— Faster planning time
e Disadvantages:
— Can be order of magnitude slower than Directed
— VisOdom cameras need to be manually pointed
— VisOdom-only mode needs manual Keep-out zones

— Only geometric terrain classification; cannot
predict high slip areas

— Unknown use of resources and final state
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Directed Driving Tradeoffs

e Benefits:
— Fastest execution time
— More “predictable” final state
— Strategies may be adapted daily
e Disadvantages:
— Can only drive as far as you can see
— Needs much more planning effort
— Limited terrain adaptability; yaw knowledge only
— Cannot plan mid-drive precision imaging with
slip

Challenges for Planetary Rover Navigation 37 MWM

- 37



Future Work

e Speed up onboard processing (e.g., less precise slip check)

o Take advantage of new software:
— Global path planner Field D*
— IDD Auto-placement (Go and Touch)
— Visual Servoing (Visual Terrain Tracking)
— Autonomous Science (Dust Devil and Cloud Detection)
e Autonomous Terrain Classification
e Ground-based drive plan assessment allowing for uncertainties
(e.qg., slip)
e Precision vehicle and instrument placement
« Paradigms for sequence re-use
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